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This work is an attempt to explain observations of vortices in experiments with shallow 
water in rotating paraboloidal vessels. The most long-lived vortices are invariably 
anticyclones, while cyclones quickly disperse, and they are larger than the Rossby 
radius. These experiments are designed to simulate geophysical flows, where large, 
long-lived, anticyclonic vortices are common. 

The general condition for vortices to be steady is that they propagate faster than 
linear Rossby waves, so that the vortex energy is not dispersed by coupling to linear 
waves. The propagation velocity is determined by a general integral relation that gives 
the velocity of the centre of mass. In geophysical flows, to lowest order in the Rossby 
number, the difference between the centre-of-mass velocity and the maximum phase 
velocity of the Rossby waves is proportional to the relative perturbation of the fluid 
depth. Since for anticyclones the difference is positive they may be steady, whereas 
cyclones cannot be. 

In the laboratory experiments this velocity difference is absent because of the 
latitudinal dependence of the effective gravity caused by the centrifugal force. 
However, to the next order in the Rossby number, there is another nonlinear 
contribution, so that anticyclones (but not cyclones) still propagate faster than the 
linear Rossby waves, and may thus be steady. The velocity difference is smaller than 
for geophysical flows, and vanishes in the limit of small Rossby number. The existence 
conditions also show that we can expect the experimental vortices to be smaller (as 
measured by the Rossby radius) than the planetary vortices. The theory does not apply 
to vortices that are much smaller than the Rossby radius. 

1. Introduction 
Large, long-lived vortices are a persistent feature of many geophysical flows. Perhaps 

the most well-known one is the Great Red Spot of Jupiter, which has existed for at least 
300 years. There are also many other large vortices on Jupiter (for instance the Large 
Ovals, which have been known for several decades (Smith et al. 1979)) and on other 
planets, such as Saturn (Big Bertha, the Brown Spot, Anne’s Spot, etc. (Smith et al. 
1982)) and Neptune (the newly discovered Great Dark Spot (Smith et al. 1989)). In the 
oceans of the Earth, compact intrathermocline anticyclones can exist for several years, 
transporting trapped fluid over thousands of kilometres (McWilliams 1985). 

A number of laboratory experiments have been performed to simulate such 
planetary flows. They are all done in rotating vessels, so that the dynamics is 
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FIGURE 1. An experiment with paraboloidal vessel. (a) Vertical section. The dashed curve is the water 
surface. On the right-hand side the elevated surface of an anticyclonic vortex is seen. (b) Top view. 
An anticyclonic vortex (which is approximately circular when viewed perpendicularly to the water 
surface) is propagating westward. 

dominated by the Coriolis force, but otherwise widely different designs are used. Some 
experiments are meant to simulate the generation of vortices by shear flows or thermal 
convection, while others demonstrate the possibility of long-lived free vortices. In the 
present paper we will focus on the latter. 

An important empirical fact about the naturally occurring vortices is the 
cyclone-anticyclone asymmetry. The largest and most long-lived vortices are 
predominantly anticyclones. (This is particularly true on the large planets, but there are 
also exceptions, such as cyclonic Gulf Stream rings.) An explanation of this difference 
was recently proposed by Nycander & Sutyrin (1992). Basically, it could be traced to 
an exact integral relation of the shallow-water equations. When expanded to lowest 
order in the Rossby number, while keeping the relative perturbation A H / H  of the fluid 
depth arbitrary, this relation gives the velocity of the centre of mass of any localized 
structure. It shows that anticyclones propagate westward faster than the linear Rossby 
waves, while the velocity of cyclones is within the region of linear phase velocities. (This 
will be referred to as the ‘nonlinear /3-effect’, to emphasize the fact that the velocity 
difference vanishes if the equations are expanded to lowest order in AH/H,  as in the 
quasi-geostrophic approximation.) Thus, cyclones, but not anticyclones, loser energy 
by radiating linear waves. 

The only experiments in which a cyclone-anticyclone asymmetry similar to that 
observed in nature could be clearly seen are those by Nezlin et al. (1990). They were 
performed in a shallow layer of water with a free surface in a rotating paraboloidal 
vessel, cf. figure 1 .  Because of the curvature of the bottom of the vessel, the effective 
Coriolis force decreases with the distance from the rotation axis, mimicking the /%effect 
on a planet. Single vortices were externally excited in the water, and then observed as 
they drifted along. It was found that anticyclones were more easily excited than 
cyclones, and that they survived for a longer time and travelled somewhat faster. The 
vortex radius was larger than or approximately equal to the Rossby radius, and the 
relative perturbation of the fluid depth was of order unity. 

These results are seemingly in good agreement with the theory of Nycander & 
Sutyrin (1992) for planetary flows, at least qualitatively. Nevertheless, there is an 
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important effect which is present in the laboratory experiments, but not in planetary 
flows, and which can be expected u priori to be of the same magnitude as the @-effect. 
This is the variation of the effective gravity g* with the latitude (here called the ‘y- 
effect ’). 

It will be shown here that this y-effect exactly cancels the nonlinear b-effect to lowest 
order in the Rossby number e. Thus, to this order in e, the centre-of-mass velocity is 
independent of the amplitude, and coincides with the phase velocity of long- 
wavelength Rossby waves. The difference between cyclones and anticyclones has 
disappeared, and both would radiate linear waves. 

This result seems to contradict the experimental evidence cited above. However, the 
analysis is based on an expansion in three small parameters: the shallow-water 
parameter 6 (the ratio between the depth of the water and the radius of the vortex), the 
Rossby number B (the ratio between the rotation frequency of the vortex and that of 
the vessel) and the size parameter a (the ratio between the radius of the vortex and the 
radius of curvature of the bottom surface). Actually, none of these parameters was 
very small in the experiments. Since the crucial nonlinear contribution to the centre- 
of-mass velocity exactly vanishes to lowest order in these parameters, it is reasonable 
to calculate higher-order contributions. 

In the present paper, the calculation is therefore carried out to second order in the 
Rossby number, and an important new contribution to the centre-of mass velocity is 
found. This term shows that anticyclones indeed propagate faster than the linear 
Rossby waves, while the velocity of cyclones is within the region of linear phase 
velocities. Thus, the situation is, after all, qualitatively the same as for planetary flows, 
although the effect is less pronounced. 

2. General conditions for steady vortices 
In a wide variety of nonlinear wave equations, necessary conditions for the existence 

of localized, steady solutions can be found by a simple two-step analysis (Nycander & 
Pavlenko 1991). In the first step the linear dispersion relation is calculated. The reason 
for this is that the amplitude of any localized solution must be small far away from the 
centre, and the localization properties are therefore determined by the linearized 
equations. In general, any structure propagating with a velocity that coincides with the 
phase velocity of some linear wave will radiate energy, analogously to Cerenkov 
radiation, and gradually disperse. In order to be steady, localized nonlinear solutions 
should therefore propagate with a velocity outside the region of linear phase velocities. 
The amplitude then decreases exponentially away from the structure, corresponding to 
an imaginary or complex wavenumber. This exponentially decreasing field is analogous 
to the evanescent wave in total reflection. 

Thus, from the linear dispersion relation we find a necessary condition for the 
velocity of the localized steady structures: it must be complementary to the linear phase 
velocities. (This complementarity was also emphasized by Flier1 1987.) The second step 
is to determine this velocity in some independent way. In many cases this can be done 
from an integral relation giving the velocity of the centre of mass. Much attention has 
been given to this problem for planetary flows (cf. Cushman-Roisin, Chassignet & 
Tang 1990; Nycander & Sutyrin 1992 and references therein), but a systematic 
derivation for the conditions of the experiments appears not to have been done before. 

Previous experience from a large number of cases indicates that if a suitable integral 
relation for the centre-of-mass velocity can be found, and if it shows that the velocity 
can be outside the region of linear phase velocities, then steady localized solutions exist. 
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This applies, for instance, to the Korteweg4e Vries (KdV) equation, to the modified 
KdV equation, and to many two-dimensional nonlinear equations describing various 
plasma modes of hydrodynamic type, such as nonlinear drift waves (Nycander 1991) 
and magnetic electron modes (Nycander & Pavlenko 1991). 

Most importantly, it applies to solitary vortex solutions of the shallow-water 
equations on a &plane, as shown by Nycander & Sutyrin (1992). In that paper explicit 
steady vortices were found by perturbation analysis, using a circular vortex with 
arbitrary radial profile as the zeroth-order solution. The p-effect and the propagation 
velocity were included to first order, resulting in a small deformation of the circular 
shape. Because of the basic scaling used, the vortex had to be larger than the Rossby 
radius. 

The properties of this solution could be easily understood from the analysis 
described above. The amplitude indeed decreases exponentially outward if the vortex 
propagates westward faster than the fastest linear Rossby waves. Furthermore, the 
integral condition that determines the centre-of-mass velocity corresponds exactly to a 
solvability condition in the explicit solution, connecting the propagation velocity of 
the vortex and the zeroth-order radial profile. 

These results were confirmed by numerical simulations. Simulations were also 
performed where the first-order solution was dropped, choosing instead a purely 
circular monopole vortex as the initial condition. After an adjustment period the 
vortex velocity described gentle oscillations around the value for the truly steady 
solution. Apparently, the steady vortices found by perturbation analysis are both 
stable and attracting. 

The equations to be studied in the present paper are very similar to the shallow-water 
equations used by Nycander & Sutyrin (1992). The main difference is that because of 
the centrifugal force in a rotating paraboloidal vessel, the effective gravity g* (cf. figure 
1) depends on the latitude (i.e. on the distance from the bottom of the vessel). It is clear 
from previous work that the influence of this y-effect is best seen from the way in which 
it affects the dispersion relation for linear Rossby waves, and the integral relation for 
the centre-of-mass velocity. Knowing that, it is easy to predict how it will affect the 
existence of steady vortices, without actually calculating such solutions explicitly. 
Thus, we will confine ourselves to deriving the linear dispersion relation and the 
relevant integral relation, with complete confidence that explicit steady solutions can 
also be found, similarly to the calculations by Nycander & Sutyrin. 

3. Derivation of the shallow-water equations in paraboloidal coordinates 
The derivation in this section is similar to the derivation of the shallow-water 

equations on a sphere by Pedlosky (1987). We start from the Euler equations, 
describing three-dimensional incompressible flow in a rotating coordinate system : 

- + v * v v  av = -2w,z"xv--, VP 
at Po 

v*v = 0. (2) 

Here woz" is the angular velocity of the system and p the pressure perturbation. For 
simplicity we neglect viscosity. (The effect of Ekman friction will be briefly considered 
at the end of $5.)  The equilibrium pressure po is 
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FIGURE 2. Paraboloidal coordinates. 
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FIGURE 3. Orthogonal unit vectors in paraboloidal coordinates. 

where r is the distance from the rotation axis, g the acceleration due to gravity and C 
a constant. 

We will transform to the paraboloidal coordinates (u, w, $) defined by (Spiegel 1968) 

x = uwcos$, y = uwsin$, z = xu2-  wz), 
(See figure 2). The gradient operator in these coordinates is written 

The unit vectors li, fi and 

w = w, = const. In cylindrical coordinates the equation for this surface is 

are shown in figure 3. 
The coordinate system is chosen so that the unperturbed water surface is given by 

z = t(r2/wi - wi), 
Thus, wi is equal to the radius of curvature R, = g/w: at the bottom of the paraboloid. 
Assuming that the pressure is zero at the surface, the equilibrium pressure can then be 
written 

po = ipp0g(l+ u'/wi) (w2 - W i ) .  (4) 

We now assume that the shallow-water parameter, 

6 = H/L,  (5 )  
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is small, and that the Rossby number, 

E = V/L2WO, 

is not large (but not necessarily smaller either). Here H is the depth of the water 
(measured perpendicularly to the surface, cf. figure l), L is the typical lengthscale of the 
motion, and V is the typical fluid velocity. To lowest order in 6 one finds from the 
w-component of (1) that the pressure perturbation is independent of the depth, 
ap/aw = 0 (cf. Pedlosky 1987). The pressure perturbation is determined by the 
condition that the total pressure must be zero at the perturbed surface. A simple 
calculation shows that this leads to the equation 

P = Pog*(u) AH, (7) 

where we have introduced the effective gravity, 

g* = g( 1 + u"w$ = g( 1 + r2/RE)'. 

The perturbation of the fluid depth AH is measured along the w-axis, perpendicularly 
to the unperturbed surface. Equation (7) is the hydrostatic approximation : the pressure 
is given by the weight (in the effective gravity field) of the fluid. 

We are now ready to write the equations of motion in paraboloidal coordinates. 
Inserting (7) into (I), and neglecting the w-component of the velocity, we obtain 

where 

and the Coriolis parameter is defined by 

2WO 
= (1  + u"w$ 

We have set w z w,, since AH 4 R, according to the shallow-water approximation. 
Finally, we need the equation of continuity in the shallow-water approximation. It 

is derived similarly as for spherical symmetry (Pedlosky 1987), using the kinematic 
condition at the bottom (i.e. at the surface of the vessel) and at the free fluid surface. 
The result is 

d H  
dt -+HV,.v, = 0, 

where d/dt is defined in (1 l), and 

Equations (9), (10) and (13) are the shallow-water equations in paraboloidal 
coordinates. With dissipation included, they should be the most realistic two- 
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dimensional equations capable of describing the experiments with rotating vessels. 
Note that the only parameter that was assumed to be small in the derivation was the 
shallow-water parameter 6. The Rossby number E is allowed to be of order unity (but 
not large), as is the ratio a between the typical lengthscale of the flow and the radius 
of curvature (or the size) of the vessel: 

a = L/R,. (14) 
Below, we will assume that both E and a: are also small. It is then convenient to 

introduce new coordinates with the dimension length : 

where uo is a ‘typical’ value of u (i.e. approximately the u-coordinate of the vortex 
centre). Note that y increases downward in the vessel, toward the bottom point, which 
is the analogue of the north pole of a planet. We also introduce the notation v+ = v, 
and -vu = uy. Substituting this into (9), (10) and (13), and expanding to first order 
in a - y/R,, we obtain 

where 

2wo U+K,Y), 
= (1 + u;/w;): 

1 
g* = g(l +u;/w;>q1 - K z Y ) ,  K1 = u0<u; + w;)? 

Equations (17H19) are the basic equations to be used in the following. 

4. The linear dispersion relation 
As the first step in finding out whether (17)-(19) can support steady monopole vortex 

solutions, we calculate the linear dispersion relation. The equations describe both high- 
frequency gravity waves and low-frequency Rossby waves. Since the vortex dynamics 
is characterized by a small Rossby number e, we are mainly interested in the low- 
frequency branch, and therefore solve the linearized equations by expanding in 8. This 
means that the gravity waves are excluded from the analysis. The possibility that the 
vortex loses energy by coupling to gravity waves will be briefly considered at the end 
of this section. 

Strictly speaking, ( 1 7 t (  19) cannot be Fourier transformed in the y-direction, since 
the coefficients are y-dependent. However, if a: - K ~ .  , y Q 1 we may calculate the local 
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dispersion relation in the geometric-optics approximation. We also allow for a weak y-  
dependence of the equilibrium depth Ho(y),  of the same magnitude as that offly) and 
g*(y) .  Thus, linearizing and expanding to lowest order in B and a, we obtain 

where the Rossby radius is defined by pk = Hog*/’, and 

T = HXY)/HO, 

P =f’(y)/f 

The essential point here is that the y-effect (the y-dependence of the effective gravity) 
does not affect the linear dispersion relation to lowest order, which is therefore 
identical to the dispersion relation for planetary Rossby waves. 

Equation (23) shows that the phase velocity w/k ,  of the linear Rossby waves is 
confined to the interval -urnax < o/k, < 0, where 

We note that the maximum phase velocity vmaz is y-dependent. Thus, even if the vortex 
velocity is larger than the local value of u,,,, there is a region some distance away 
where the Rossby waves can travel faster than the vortex. The condition for 
stationarity is that this region should be sufficiently far away that the coupling to the 
linear waves is insignificant. In §6 this condition will be made more precise, and used 
for estimating the amplitude necessary for stationarity. 

We finally briefly consider the coupling to gravity waves, which are governed by the 
high-frequency branch of the dispersion relation : 

w2 = f2+g*Hok2 ,  (27) 

where the inhomogeneities included in (1 7)-( 19) have been neqlected. Thus, the 
minimum phase velocity vo of the gravity waves is uo = (g*H,,)r. This should be 
compared with the propagation velocity of the vortex, which is approximately equal to 
the maximum phase velocity v,,, of the Rossby waves, as will be shown in $5. 
Assuming that H, = const., i.e. 7 = 0, and evaluating (26) using (8) and (12), we obtain 

We find that vo/u,,, > 2(R,/H0)t % 1. Thus, the gravity waves as described by the 
shallow-water equations always travel much faster than the vortex, and there can be 
no coupling. 

If we go beyond the shallow-water approximation, the phase velocity can be lower, 
as seen from the dispersion relation w2 = gk for surface waves on deep water. However, 
in order to satisfy the resonance condition the wavelength of the gravity waves must 
be much smaller than the depth of the water, i.e. very much smaller than the radius of 
the vortex. The coupling is therefore very weak. 

This is an important difference between geophysical flows and the experiments. On 
a planet we have wo 4 @/I?): instead of the equality oo = (g/Rc)i. (Here wo is the 
angular velocity of the planet, and R is its radius.) The resonance condition with 
gravity waves must therefore be evaluated from case to case. In the atmosphere of the 
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Earth, for instance, we find that the phase velocity (gHo)t obtained from (27) is only 
slightly larger than the propagation velocity of the vortex, and the coupling to gravity 
waves is therefore a stronger effect than in the experiments. 

5. Centre-of-mass velocity 
The first step in calculating the centre-of-mass velocity is to find the integral relation 

expressing mass conservation. Because of the geometric corrections in (19) we have 
(d/dt)$AHdxdy =k 0. Instead, mass conservation is given by 

d / [ l - ( ~ , + ~ ~ ) y ] A H d x d y  dt = 0. (29) 

We have here neglected terms that are quadratic in ,vly and K ~ Y ,  since they are smaller 
by two orders in the size parameter a than the leading terms. (To obtain a correct result 
to that order one would have to include many more terms in (17)-(19).) The reason for 
the correction term in (29) is that x and y are not uniform Cartesian coordinates, so 
that the real, physical size of the surface element dx dy is smaller at larger values of y .  

Using (19), we then obtain 

~ [ l - ( ~ ~ + ~ ~ ) ~ ] A f I d x d y  = (1-K2y)U,Hdxdy. (30) 
dt \ 

where we have again neglected terms that are a2 times smaller than the leading term. 
We have also assumed that the fields AH, u, and uy decrease suffciently fast at infinity, 
so that all boundary terms from the partial integrations vanish. 

Equation (30) attains a more useful form if v, can be expressed in terms of AH. We 
therefore solve (17) and (18) by expansion in 8, setting o = do) +dl). To lowest order 
we neglect the left-hand side, and obtain 

The next-order solution is 

where we have again neglected terms which are a factor aa smaller than the leading 
terms. 

The lowest-order contribution to the centre-of-mass velocity is obtained by inserting 
(31) into (30): 

where 
19 

(33) 

(34) 
FLM 254 
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and p is defined in (25). Except for the y-effect (the last term of (33)), this is the same 
result as that obtained for planetary flows (Nycander & Sutyrin 1992). From (21) and 
(22) we see that B = K~ and y = -K$ ,  so that the y-effect exactly cancels the nonlinear 
part of the B-effect. Defining the centre of mass by 

R = r[l - ( ~ ~ + ~ ~ ) y ] A H d x d y  [l - ( ~ ~ + ~ J y ] A H d x d y ,  (35) s is 
we obtain 

where 7 is defined in (24). We have here neglected terms of the kind SyAHdxdy, 
assuming that the vortex is circular to lowest order. These terms are then a factor a2 
smaller than the leading-order terms, i.e. of the same magnitude as terms that have 
already been neglected. 

According to (36) the centre-of-mass velocity is independent of the amplitude, and 
coincides with the phase velocity -urn,, of the fastest linear waves, unlike planetary 
flows. This result is the same as for the quasi-geostrophic vorticity equation (Nycander 
& Sutyrin 1992), and seems to imply that steady monopole vortices are impossible. 
Since even a small correction to this result would be important, it makes sense to carry 
out the calculation to the next order in e. This correction is obtained by inserting (32) 
into (30). After some calculations we find 

g*'H 
d"' dt - ( K ,  + K ~ )  y1 AHdx dy = 1 7  { + K~ [ ($7'- ($3'1) dx dy. 

(37) 
The second term on the right-hand side of (37) (i.e. the term proportional to KJ is 
proportional to the ellipticity of the vortex. For a vortex that is circular to lowest order, 
with the non-circularity being proportional to the 'inhomogeneity parameters' 7, /I, 7, 
K~ and lc2, the magnitude of this term is a factor a' smaller than the first term in (37). 
It can therefore be neglected to the same degree of accuracy as used throughout. 
(Vortices in shear flows, on the other hand, are often strongly elliptic, and this term can 
then be important.) 

Finally, adding the contributions from (33) and (37), (36) is replaced by 

Equation (38) contains a new nonlinear contribution to the centre-of-mass velocity. 
Comparing with (26) we see that anticyclones propagate faster than the linear Rossby 
waves, while the velocity of cyclones is within the region of linear phase velocities. 
Thus, anticyclones but not cyclones can be steady and localized. Qualitatively, this is 
the same conclusion as for planetary flows, but in the laboratory experiments with 
rotating vessels the nonlinear contribution is much smaller because of the y-effect. 

The simple form of the nonlinear correction in (38) indicates that it should be 
possible to find a simple physical interpretation of it. This is most easily done from the 
shallow-water equations on the B-plane. These are a simplified version of (17H19), 
where we neglect all geometric corrections, but let the Coriolis parameter, the effective 
gravity and the equilibrium depth be variable. In other words, we set K ,  = K~ = 0, while 
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f ,  g* and H,, are functions of y. (This is not a completely consistent approximation, but 
it may still be useful.) For the resulting set of equations the following exact integral 
relation holds : 

The integrand on the left-hand side is the analogue of the generalized momentum of 
a charged particle in a magnetic field (Nycander 1990). For a steady and almost 
circular solution propagating with the velocity U2 this can be reduced to 

U f(y)AHrdr = [~Hv,f(y)+g*(y) H ~ ( ~ ) A ~ - g * ’ ( y ) ~ ( A H ) ~ l r d r ,  

where vg is the azimuthal velocity, and we have used the fact that (cos2 0 )  = a when 
integrating over 9. We then substitute uo from the equation of motion, expressing the 
Coriolis force through the pressure gradient and the centrifugal force. After some 
partial integrations, and neglecting terms that are quadratic in the equilibrium 

som som 
gradients, we obtain 

g*Ho (P  + 7 )  E p  + PEk 

f M  
U = - ( y - P ) -  f , (39) 

where we have introduced the potential energy, Ep = g*(AH)2dxdy, the kinetic 
energy, Ek = :J Hoi dxdy, and the mass anomaly M = II AHdxdy. The total energy 
Ep + Ek is exactly conserved by the shallow-water equations on the /?-plane. Notice that 
we have not assumed that the Rossby number is small in the derivation of (39). 

The first term on the right-hand side of (39) is equal to the maximum velocity of the 
linear Rossby waves while the second term is the crucial nonlinear contribution. For 
planetary flows, when y = 0, this nonlinear term is proportional to the total energy of 
the vortex divided by the mass anomaly. To lowest order in the Rossby number we can 
neglect the kinetic energy, and obtain the result in Nycander & Sutyrin (1992). In the 
experiments with rotating paraboloidal vessels, on the other hand, P+y = 0, and the 
potential energy vanishes from (39). The nonlinear contribution to the velocity is 
therefore entirely due to the kinetic energy Ek. The last term of (38) is the geostrophic 
approximation of this contribution. 

So far dissipative terms have been neglected, and therefore dR,/dt = 0. However, 
the effect of bottom friction (i.e. the viscous dissipation in the Ekman layer) may easily 
be incorporated by adding the Ekman pumping h,Q to the right-hand side of (19) 
(Dolzhanskii, Krymov & Manin 1990). Here Q = a , ~ ~ - 8 ~ u ,  is the vorticity, and 
h, = (v /2f) i  is the thickness of the Ekman layer where v is the viscosity. The main effect 
of this term is spindown and dissipative widening of the vortex. The widening rate is 
most easily calculated for vortices on thef-plane (i.e. setting K~ = K~ = 0 and neglecting 
the y-dependence of all the equilibrium parametersf, g* and Ho). Using (19), inserting 
the velocity do) in the dissipative term and do) + dl) in the other terms, and using the 
f-plane approximation we obtain 

d 1.’ AH dx dy = 4h, - AH dx dy. 
dt g* f s 

Defining the characteristic radius a of the vortex as a = ((P)):, 

( r  ) - r2AHdxdy AHdxdy, -I il 
where 

19-2 
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this can be written 
da 2h,g* 
dt a f .  
_ -  

For the quasi-geostrophic vorticity equation this result is easily generalized to the p- 
plane. The only difference is that r above is then the distance from a point which moves 
with the centre-of-mass velocity - -pi .  For the shallow-water equations on the ,&plane 
with Ekman pumping included it is more difficult, since the velocity of the centre of 
mass depends on the amplitude, but (40) should still give a good estimate of the 
widening rate. 

The Ekman friction also causes a drift in the y-direction, which may be calculated 
as - ,8hEg*/f using the p-plane equations. However, comparing with (40) we see that 
this velocity is a factor pa - a smaller than the widening rate, and therefore too small 
to be of any significance. 

6. Estimate of the amplitude necessary for stationarity 
As pointed out in $4, the maximum phase velocity v,,, of the Rossby waves is a 

function of latitude. It is therefore not enough for a steady vortex to propagate just 
slightly faster than the local value of v,,,, since there would then exist a region nearby 
where Rossby waves with long wavelength travel faster than the vortex. If one tries to 
calculate an explicit steady solution with such a velocity, one finds that it is oscillatory 
in this region (Nycander & Sutyrin 1992), and that the energy of this oscillatory tail 
diverges (Nycander 1989). Dynamically, this means that a vortex with finite energy 
radiates energy by coupling with the linear waves. This phenomenon was seen in the 
simulation of the intermediate geostrophic dynamics by Matsuura & Yamagata (1982). 
(Linear waves were excited at the southern edge of the anticyclone, where Rossby 
waves travel faster than at its centre.) However, if the vortex propagates fast enough, 
the oscillatory region is far away, and the amplitude decreases exponentially in the 
intermediate region. The leakage of energy is then very small, and can be neglected for 
all practical purposes. 

The criteria for the vortex to be considered steady are therefore that the distance Lo,, 
to the oscillatory region should be larger than the radius of the vortex (the distance to 
the separatrix), and also much larger than the ‘damping length’ L, (i.e. the inverse 
imaginary wavenumber) in the region between the vortex and the oscillatory region. 

Assuming that H, is constant (i.e. 7 = 0), we can find the explicit dependence of the 
maximum phase velocity umaZ on the distance r from the rotation axis of the vessel. 
From (28) we have v,,, = Cr/(r2 + R$, where C is a constant. The relevant quantity, 
however, is the angular velocity u, around the vessel, since the vortex travels on a fixed 
latitude (i.e. a constant value of r ) .  Waves propagating higher up on the vessel travel 
a longer distance, and must therefore travel faster in order to keep up with the vortex. 
Correcting for this we obtain v, = C/(r2+R:)i, where C is another constant. Notice 
that va increases toward the bottom of the vessel, i.e. toward the ‘north pole’, so that 
the oscillating tail appears on the poleward side of the vortex. In the planetary case it 
appears on the equatorward side. 

The angular propagation velocity of the vortex can be estimated from (38): 

u, .% -va( l  +%F), 
where m a n d  A are characteristic values of the depth perturbation and the total depth 
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Angular 
velocity 

ua -v,cv) 
FIGURE 4. Illustration of the condition for stationarity. On the horizontal axis there is angular velocity 
around the vessel, while the latitude y is on the vertical axis, with the vortex centre at y = 0. The 
region of linear Rossby wave propagation is shaded, and Ua is the propagation velocity of the vortex. 
the difference between U, and - u, at y = 0 is given by the last, nonlinear term on the right-hand side 
of (38). In the region y > Lo,, the resonance condition is satisfied, and linear waves are excited. For 
the vortex to be almost steady, this region must be far away. 

in the vortex, and L is its characteristic radius. The distance to the region where Ua and 
the local value of -va are equal (cf. figure 4) is then approximately 

-- 

p i H A H  V ,  p i H m ( r 2 + R : ) i  
L2 Po i3va/ay L2 Po rR, * 

Lo,, --- = -- 

For Y x R, as in the experiments by Nezlin et al. (1990) (corresponding to mid-latitudes 
on a planet) we obtain 

(41) 
H 
HO 

Lo,, z F -  3 R,, 

where we introduced the Rossby number e = p i m / ( L 2 H o ) .  The condition Lo,, > L 
can now be written 

e H / H o  > +a, 
where the size parameter a is defined in (14). Using (8) and (12), (41) may be rewritten 

(42) 

as 

Equation (42) is then replaced by 
H Ho 2- > -a2. L AH (44) 

The condition (42) gives a lower bound for the Rossby number, and (44) means that 
the shallow-water parameter 6, too, cannot be arbitrarily small. 

To evaluate the other condition we must first estimate the ‘damping length’. From 
the dispersion relation (23) we obtain the wavenumber in the small-amplitude region 
of any-steady solution: 

where U is the velocity in the x-direction of the solution, corresponding to the phase 
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velocity wlk,  of a linear wave. Estimating this velocity from (38), assuming that the 
last, nonlinear term is smaller than the linear one (i.e. we exclude vortices with 
AH 4 H,), we obtain the damping length Ld = lk21-i: 

The condition Lo,, 9 L,, which guarantees that the radiation of linear waves is 
insignificant, can then be written 

This condition is more restrictive than (42), except when the amplitude is very large. 
It can also be rewritten as a lower bound for 6 by using (43), similarly to the form (44). 

These estimates may be compared to the experiments by Nezlin et al. (1990). They 
used a vessel rotating with the angular velocity w, = 7.5 s-l, giving R, = 17 cm, and the 
equilibrium depth H ,  was constant and between 1 and 5cm. The parameters 
of the vortices in the extreme cases were approximately: (a) H ,  = 1 cm, AHIH, x 1, 
p R  x 4 cm, L x 2pR, and (b) H ,  = 5 cm, AHIH, x 0.2, p R  x 10 cm, L x p R .  

In case (a) we get Lo,, x 25 cm from (41), and Ld x 0.7L x 6 cm. Thus, the required 
inequalities are well satisfied, and these anticyclones should indeed be unaffected by 
Rossby-wave dispersion. The experimentally measured velocity, on the other hand, 
does not seem to be quite as large as predicted from (38). 

In case (b) we get Lo,, x 10 cm x L, and these vortices must radiate Rossby 
waves. However, cyclones should be much more strongly affected than anticyclones, 
since they are almost entirely within the oscillatory region. For the anticyclones this 
region starts somewhere near the separatrix. This can still explain the observed 
cycloneanticyclone asymmetry. 

Thus, the experimental observations appear compatible with the present theoretical 
results. However, the data are not precise enough to permit a detailed comparison, and 
cannot be said to confirm the theory. It should also be noted that the ratio a = L/Rc 
is approximately 0.5, which is not very small, and this of course limits the applicability 
of the theory. In particular, it means that the geometric optics approximation, which 
is the basis of the local relation (26), is not very accurate. 

Vortex experiments in flat rotating vessels have been carried out by Kloosterziel & 
van Heijst (1991) and by Takematsu & Kita (1988). In these experiments the Rossby 
radius was larger than the whole vessel, i.e. much larger than in the experiments by 
Nezlin et al. (The Rossby radius is approximately equal to the geometric mean of the 
fluid depth Ho and the radius of curvature of the fluid surface, Rc.) Vortices in such 
experiments either have zero circulation, in which case they are typically unstable, as 
demonstrated by Kloosterziel & van Heijst, or else they are poorly localized, with the 
azimuthal velocity inversely proportional to the distance from the vortex centre. In 
either case their propagation velocity is not determined by the integral relations (38) 
and (39), but turns out to be much lower. A simple way to understand this is to note 
that such flows can be described to a first approximation by the two-dimensional Euler 
equation (i.e. the barotropic vorticity equation with a rigid lid), and the maximum 
phase velocity of Rossby waves on the P-plane in the framework of this equation is 
infinite. Thus, the present theory does not apply to this parameter regime, which is very 
different from that studied by Nezlin et al. 
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7. Summary and discussion 
In the previous sections the shallow-water equations appropriate to describe 

laboratory experiments in rotating paraboloidal vessels were derived in paraboloidal 
coordinates. The main difference to the corresponding equations for planetary flows is 
that the effective gravity g* is variable in the laboratory experiments because of the 
centrifugal force (here called the y-effect). These equations were then analysed in two 
ways. 

First, the dispersion relations (23) and (27) for linear waves were derived. It was 
shown that the Rossby waves are not affected by the y-effect, and that the gravity waves 
as described by the shallow-water equations cannot couple to the vortex. 

Secondly, the integral relation (38) for the centre-of-mass velocity was derived. To 
lowest order in the Rossby number E ,  it turns out that the y-effect exactly cancels the 
nonlinear part of the p-effect. Thus, unlike for planetary flows, the centre-of-mass 
velocity coincides with the phase velocity of the fastest (long-wavelength) Rossby 
waves to this order. To rephase this result: the ‘scalar nonlinearity’ in the simplified 
equation used by Nezlin e f  al. (1990) vanishes identically. 

To higher order in B ,  however, another nonlinear contribution was found that causes 
anti-cyclones to propagate faster than cyclones, and faster than the Rossby waves. It 
was seen that this contribution is proportional to the kinetic energy of the vortex. It 
is of course also present for planetary flows, but there the dominant nonlinear 
contribution comes from the potential energy. (This contribution vanishes in the 
laboratory experiments owing to the y-effect.) 

Equation (38) was derived under the assumption that three parameters are small : the 
shallow-water parameter 8, the Rossby number E ,  and the ratio CL between the typical 
lengthscale of the flow and the radius of curvature of the vessel, defined in ( 5 ) ,  (6) and 
(14), respectively. Unlike in many other theoretical treatments, however, no assumption 
was made about the ratio AH/H,  between the perturbation of the fluid depth and the 
equilibrium depth. In particular, the expression is valid even for AH + H,. (Such 
‘exotic’ vortices were observed by Nezlin 1986, but apparently no systematic study of 
their properties has been made.) If we let H, -+ 0 while keeping AH fixed, the two first 
(linear) terms on the right-hand side of (38) vanish, while the last term stays constant. 
Thus, in this limit it should be particularly simple to measure the effect of this 
important nonlinear term experimentally. 

A similar case in 7 = /3. As pointed out by Nezlin (1986), this is achieved when the 
equilibrium fluid surface and the surface of the vessel are described by exactly similar 
paraboloids, so that the equilibrium depth along the vertical z-axis (i.e. the rotation 
axis of the vessel) is constant. The depth H, (which is measured perpendicularly to the 
equilibrium surface, cf. figure 1) then decreases away from the rotation axis, similarly 
to the Coriolis parameter. Again, the propagation velocity of the vortex is then entirely 
given by the last term on the right-hand side of (38), and cyclones and anticyclones 
propagate in opposite directions. 

In both these cases, H,, + 0 and 7 = /3, the Rossby waves are suppressed, so that the 
existence condition for localized steady vortices discussed in $2 (i.e. that they must 
propagate faster than the Rossby waves) is trivially satisfied. To evaluate this condition 
in a less trivial situation, we have also considered the case when H, is constant, i.e. 
7 = 0, in $6. The conditions (42) or (44) and (45) then determine the necessary amplitude 
for the vortex to be steady. If they are satisfied, the oscillatory region (where linear 
Rossby waves can propagate faster than the vortex) is so far away that the energy lost 
by radiation of Rossby waves is insignificant. 
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No steady solutions have been calculated explicitly here. However, there is no doubt 
that this can be done if the existence conditions mentioned above are satisfied, in a 
manner similar to the perturbation analysis by Nycander & Sutyrin (1992). A circular 
vortex with arbitrary radial profile is then chosen as the zeroth-order solution, 
neglecting the keffect and the y-effect. These inhomogeneous effects are taken into 
account in the first-order solution, and determine the propagation velocity of the 
vortex and cause in a slight deformation of its circular shape. This has also recently 
been confirmed by a numerical simulation of the general geostrophic equation on the 
p-plane (Nezlin & Sutyrin 1993). It showed that anticyclones can indeed propagate 
steadily even when the variable effective gravity is included. 

From (38) it can be seen that the crucial nonlinear contribution to the centre-of-mass 
velocity is inversely proportional to L2, i.e. to the area of the vortex. For vortices in 
planetary flows, on the other hand, the largest nonlinear contribution is independent 
of the size. Consequently, the existence criteria presented in $6 favour small vortices 
much more than the corresponding criteria for planetary flows (Nycander & Sutyrin 
1992). We can therefore expect that steady vortices are in general smaller (as measured 
by the Rossby radius) in the experiments than in planetary flows. 

Finally, one might speculate about further possible extension of the theory. The 
important relation (38) is based on an expansion to second order in e, but only to first 
order in IS and a. From the symmetry of the calculations in $5 it may be seen that the 
next-order terms in a vanish for an almost circular vortex, like the term j y  AHdxdy 
already mentioned. Thus, the largest new terms that could be obtained from an 
expansion to higher order in a would be of order a3. Such an expansion would not be 
meaningful, since the vortex can hardly be considered as a localized structure if these 
terms are not very small. 

An expansion to higher order in the shallow-water parameter IS, on the other hand, 
might reveal some important new contribution. Such an expansion is also motivated 
by the condition (44), which shows that 6 cannot be arbitrarily small in a vortex that 
propagates fast enough to be steady. In this case, however, the hydrostatic 
approximation (7) is not longer valid, which would complicate the calculations a great 
deal. No attempt has therefore been made to expand to higher order in 6. 

I thank Dr George Sutyrin for helping me to clarify the physical origin of the new 
nonlinear contribution to the centre-of-mass velocity, and in general for inspiring 
discussions and interest in this work. I am also grateful to Dr S. V. Bazdenkov, whose 
critical comments on an early version of this work prompted me to perform the 
derivation from the primitive three-dimensional equations in parabolic coordinates. 
This work was done while being supported by a postdoctoral fellowship from the 
Swedish Natural Science Research Council. 
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